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Abstract

Construction of stochastic models that describe the effective dynamics of observables of interest is an useful instrument
in various fields of application, such as physics, climate science, and finance. We present a new technique for the construc-
tion of such models. From the timeseries of an observable, we construct a discrete-in-time Markov chain and calculate the
eigenspectrum of its transition probability (or stochastic) matrix. As a next step we aim to find the generator of a contin-
uous-time Markov chain whose eigenspectrum resembles the observed eigenspectrum as closely as possible, using an
appropriate norm. The generator is found by solving a minimization problem: the norm is chosen such that the object
function is quadratic and convex, so that the minimization problem can be solved using quadratic programming tech-
niques. The technique is illustrated on various toy problems as well as on datasets stemming from simulations of molecular
dynamics and of atmospheric flows.
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1. Introduction

Inverse modeling is a powerful tool for the investigation of complex systems in various fields of application.
If models derived from first principles are either very complicated or just non-existing, inverse modeling –
constructing models from available data – can be an interesting alternative. A typical situation where inverse
modeling can be very useful is the case when a complex system yields relatively simple macroscopic behavior
that may be captured with low-order models, but where the derivation of such low-order models from first prin-
ciples is very difficult or impossible. Such situations arise for example in molecular dynamics, econometrics,
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or climate science. In this study we focus on the construction of low-order stochastic models in the form of
continuous-time Markov chains from timeseries.

To make things more precise and clarify the issues, let us start with a simpler problem. Consider a contin-
uous-time Markov chain on a finite state-space S (for a general introduction to the theory of Markov chains,
see [1,2]; continuous-time Markov chains are treated in detail in [3]). This chain is completely determined by its
generator L, that is, the matrix with nonnegative off-diagonal elements, nonpositive diagonal elements and
zero row sums (

P
yLðx; yÞ ¼ 0 8x 2S) such that
lim
t!0þ

Exf ðX tÞ � f ðxÞ
t

¼
X
y2S

Lðx; yÞf ðyÞ; ð1Þ
for all suitable test functions f : S! R; here Ex denotes the expectation conditional on Xt=0 = x and Xt de-
notes a sample path of the continuous-time Markov chain. Assume that the chain is ergodic and stationary,
and denote by fX tgt2R the equilibrium trajectory of the chain in a given realization. Given a sampling of Xt at
discrete time-intervals, fX tjgj2Z, with tj = jh, h > 0, how can we reconstruct the generator L of the chain? Since
h is fixed and may be rather large, (1) cannot be used. Yet, one can define the transition probability matrix P(h)

whose elements P(h)(x,y) give the probability to have gone from state x to state y after a time-interval h:
P ðhÞðx; yÞ ¼ lim
N!1

PN
j¼�N 1ðX jh ¼ xÞ1ðX ðjþ1Þh ¼ yÞPN

j¼�N 1ðX jh ¼ xÞ
; ð2Þ
where 1(Æ) denotes the indicator function, 1(Xjh = x) = 1 if Xjh = x and 1(Xjh = x) = 0 otherwise. By ergodicity,
this limit exists and is unique, and P(h) and L are related as
P ðhÞ ¼ expðhLÞ; L ¼ h�1 log P ðhÞ. ð3Þ
This relation offers a way to reconstruct L from P(h); log P(h) can be computed by using e.g. the spectral
decomposition of P(h) (see (7)).

Unfortunately, the above procedure is not practical for the actual problems that we want to address in this
paper in which:

(1) the discrete sampling is finite, i.e. we are only given fX tjgj¼0;...;N corresponding to tj 2 [0,Nh] for some
N <1;

(2) the underlying process Xt may not be Markov since, in a typical application, Xt is the timeseries of an
observable which may display memory effects.

These features lead to the following practical difficulty. The matrix ~P ðhÞ computed via
~P ðhÞðx; yÞ ¼
PN�1

j¼0 1ðX jh ¼ xÞ1ðX ðjþ1Þh ¼ yÞPN�1
j¼0 1ðX jh ¼ xÞ

; ð4Þ
is, by construction, a stochastic matrix satisfying
P

y
~P ðhÞðx; yÞ ¼ 1 8x and ~P ðhÞðx; yÞP 0 8x; y. However,

L ¼ h�1 log ~P ðhÞ will, in general, have some negative or even complex off-diagonal elements and therefore will
not be acceptable since it is not a generator of a continuous-time Markov chain. This issue is in fact related to
the following famous (and open) embedding problem for Markov chains: not every discrete-in-time Markov
chain (such as the one associated with ~P ðhÞ) has an underlying continuous-time chain, and the necessary
and sufficient conditions for this to be the case are unknown. It is known what conditions a matrix must satisfy
in order to be a generator (real, nonnegative off-diagonal elements; zero row sums); also, if L is a generator
then all matrices P(h) = exp(hL) with h P 0 are stochastic matrices. However, it is not known what exact con-
ditions a stochastic matrix P must satisfy so that it can be written as P = exp(hL) with L a generator and h P 0
(i.e., the conditions for P to be embeddable). The subset of n · n embeddable matrices within the set of all n · n

stochastic matrices has a very complicated geometrical structure (except if n = 2); in particular, it is non-con-
vex. For more details on the embedding problem we refer to [4–7].



784 D.T. Crommelin, E. Vanden-Eijnden / Journal of Computational Physics 217 (2006) 782–805
The main result of this paper is an efficient algorithm which gets around the difficulty posed by the embed-
ding problem and permits to re-construct a true generator L from the observed ~P ðhÞ. This is done via the solu-
tion of a variational problem: we find the generator L such that exp(hL) is the closest to the measured
stochastic matrix ~P ðhÞ in the sense that their spectrum are the closest. If h�1 logð~P ðhÞÞ is a generator (i.e. if
~P ðhÞ is embeddable), then the procedure gives L ¼ h�1 logð~P ðhÞÞ. If h�1 logð~P ðhÞÞ is not a generator, then the pro-
cedure gives the true generator L which is the closest to h�1 logð~P ðhÞÞ in the sense above. The resulting models
give a much more faithful representation of the statistics and dynamics of the given timeseries than models
constructed by only aiming to reproduce the equilibrium distribution and, possibly, a decorrelation time.
Notice also that this construction is different from other procedures that have been proposed in the literature
to go around the embedding problem. For instance, when a given P(h) does not have an exact underlying gen-
erator because log(P(h)) has negative off-diagonal elements, Israel et al. [6] propose to set the negative off-diag-
onal elements to zero and change the diagonal elements such that the condition of zero row sums is satisfied.
The approximation method we describe in this paper is less ad hoc and, we believe, more attractive as it
directly aims at reproducing key characteristics of the Markov chain like the leading modes of the eigenspec-
trum of the measured ~P ðhÞ. Bladt and Sørensen [7] use maximum likelihood estimation to find a generator
given a timeseries. Their numerical procedure to find the maximum likelihood estimator seems efficient but
rather costly; moreover, the estimator may not exist in various cases. The latter problem becomes particularly
urgent if the sampling frequency is low (i.e., if h is large), or if the iterates of the estimator approach the
boundary of the set of generators (which is likely to happen if the given data has no exact underlying gener-
ator). These are circumstances that typically show up in applications; the approach we present here is capable
of dealing with them.

The remainder of this paper is organized as follows: in Section 2 we recall the spectral decomposition of
a generator L (Section 2.1) and we give the variational problem used to determine the Markov chain gen-
erator with an eigenspectrum that matches the observed spectrum as closely as possible (Section 2.2). This
variational problem involves the minimization of a quadratic object function subject to linear constraints,
i.e. it leads to a quadratic programming problem, for which there are well-established solution methods. The
overall numerical procedure and its cost are presented in Section 2.3, and some error estimates are given in
Section 2.4. In Section 3, the algorithm is illustrated by using it to obtain approximate generators for toy
problems with and without exact underlying generators. In Sections 4 and 5, we apply the method to data
from applications: one timeseries generated by a model simulating the dynamics of an alanine dipeptide
molecule in vacuum (Section 4), and another one obtained from a model that describes large-scale atmo-
spheric flow (Section 5). In both case, the data are non-Markovian at short time-intervals; we show how
to obtain good results by using information from longer time intervals. Concluding remarks and possible
generalizations are given in Section 6.
2. A quadratic programming approach

2.1. Preliminaries: spectral representation of the generator

Assume that the number of states in S is n, and let {wk,/k,kk}k=1, . . ., n with wk = (wk(1), . . .,wk(n)) and
/k = (/k(1), . . .,/k(n))T be the complete bi-orthogonal set of eigenmodes and eigenvalues of a generator L,
L/k ¼ kk/k; wkL ¼ kkwk; wk/l ¼ dkl; ð5Þ

ordered such that Rekk P Rekk+1 for all k. The first eigenmode (k = 1) has special properties, since it contains
the invariant distribution l(x) (assumed to be unique): w1 = l, /1 = (1, . . ., 1)T and k1 = 0. Assuming that all
eigenvalues have multiplicity one, L can be represented as
Lðx; yÞ ¼
Xn

k¼1

kk/kðxÞwkðyÞ. ð6Þ
The spectral representation of L allows one to easily compute the exponential of L. Indeed, if P(h) = exp(hL),
then P(h) can be represented as
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P ðhÞðx; yÞ ¼
Xn

k¼1

Kk/kðxÞwkðyÞ; ð7Þ
where Kk = exp(kkh). Conversely, if {wk,/k,Kk}k=1, . . ., n is the complete bi-orthogonal set of eigenmodes and
eigenvalues of P(h) so that (7) holds, then L = h�1 logP(h) can be represented as in (6) with kk = h�1 logKk.

2.2. A quadratic variational problem

Suppose that we have constructed from (4) the stochastic matrix ~P ðhÞ associated with the finite sampling
fX tjgj¼0;...;N , tj = jh, h > 0, N <1. As explained in Section 1, the stochastic matrix ~P ðhÞ may have no true gen-
erator associated with it. This means that if f~wk; ~/k; ~Kkg is the complete bi-orthogonal set of eigenmodes and
eigenvalues of ~P ðhÞ so that ~P ðhÞ can be represented as
~P ðhÞðx; yÞ ¼
Xn

k¼1

~Kk
~/kðxÞ~wkðyÞ; ð8Þ
the matrix
~Lðx; yÞ ¼
Xn

k¼1

~kk
~/kðxÞ~wkðyÞ where ~kk ¼ h�1 log ~Kk ð9Þ
will in general have negative or even complex off-diagonal element and will therefore not qualify as a generator
of a continuous-time Markov chain.

To get around this difficulty, we propose to find a true generator L(x,y) optimal with respect to the data at
hand by minimizing the following object function under variation of L:
E ¼
Xn

k¼1

akj~wkL� ~kk
~wkj2 þ bkjL~/k � ~kk

~/kj2 þ ckj~wkL~/k � ~kkj2
� �

ð10Þ
subject to the constraints
Lðx; xÞ ¼ �
X
y2S
y 6¼x

Lðx; yÞ 8x 2 S ð11Þ
and
Lðx; yÞP 0 8x; y 2S with x 6¼ y. ð12Þ

In (10) ak, bk, ck are weights, typically of the form ak ¼ ~akj~kk

~wkj�2, bk ¼ ~bkj~kk
~/kj�2, ck ¼ ~ckj~kkj�2. If we then

pick ~ak ¼ ~bk ¼ ~ck ¼ 1 8k, relative errors of the same order in the eigenvectors and eigenvalues of L will give
contributions of similar magnitude in E.

The constraint (11) can be straightforwardly accounted for explicitly in (10), and one is then left with a qua-
dratic functional which can be compactly written as:
EðLÞ ¼ 1

2
hL;HLi þ hF ; Li þ E0. ð13Þ
Here
hL;HLi ¼
X

x;y;x0 ;y02S
x6¼y;x0 6¼y0

Lðx; yÞHðx; y; x0; y0ÞLðx0; y 0Þ;

hF ; Li ¼
X

x;y2S
x6¼y

F ðx; yÞLðx; yÞ
ð14Þ
and we defined



786 D.T. Crommelin, E. Vanden-Eijnden / Journal of Computational Physics 217 (2006) 782–805
Hðx; y; x0; y 0Þ ¼2
Xn

k¼1

ðakðdðx; x0Þ þ dðy; y0Þ � dðx0; yÞ � dðx; y0ÞÞ~wkðxÞ�~wkðx0Þ

þ bkdðx; x0Þð~/kðxÞ � ~/kðyÞÞð�~/kðx0Þ � �~/kðy 0ÞÞ þ ck
~wkðxÞ�~wkðx0Þð�~/kðx0Þ � �~/kðy0ÞÞÞ; ð15Þ

F ðx; yÞ ¼
Xn

k¼1

ðak
~kkð~wkðxÞ�~wkðxÞ � ~wkðyÞ�~wkðxÞÞ þ bk

~kk/kðxÞð�/kðxÞ � �/kðyÞÞ þ ck
~kk

�~wkðxÞð�~/kðxÞ � �~/kðyÞÞ

þ complex conjugateÞ; ð16Þ

E0 ¼
Xn

k¼1

~kk
�~kk

X
x

ðak
~wkðxÞ�~wkðxÞ þ bk

~/kðxÞ�~/kðxÞ þ ck

 !
; ð17Þ
where the bar denotes complex conjugate. (13) is a quadratic object function to be minimized over all L(x,y)
with x; y 2 S and x 6¼ y subject to (12). Since there are n2 � n off-diagonal elements in L, E should be thought

of as a function on Rn2�n. E is also convex since it is straightforward to check that the level sets of E are ellip-
soids in Rn2�n centered around the point in Rn2�n associated with the off-diagonal elements of ~L given in (9).
Thus ~L is the absolute minimizer of (13) with Eð~LÞ ¼ 0. ~L is also the minimizer of (13) subject to (12) if ~P ðhÞ is
embeddable, since in this case ~L satisfies (12). If ~P ðhÞ is not embeddable, ~L is not the minimum of E subject to
(12), but the minimization problem still has a unique solution because because the domain for L defined by
(12) is a convex domain in Rn2�n. The corresponding minimizer Lmin is the unique true generator ‘‘closest’’
to ~L.

One can use other object functions than (10) to formulate the search for an optimal generator as a mini-
mization problem. In particular, it is easy to show that the minimizer of
E0 ¼
X

x;y2S
x6¼y

jLðx; yÞ � ~Lðx; yÞj2; ð18Þ
over all matrices L such that L(x,y) P 0 if x 6¼ y must be
Lðx; yÞ ¼ maxðRe ~Lðx; yÞ; 0Þ if x 6¼ y; ð19Þ
which can be supplemented by Lðx; xÞ ¼ �
P

y 6¼xLðx; yÞ to obtain a generator. The disadvantage of using (18),
however, is that the information on the eigenvectors and eigenvalues of ~L enters only very indirectly (18),
which means that the spectrum of (19) may be rather different from those of ~L. In contrast, (10) precisely
aim at reproducing the spectrum of ~L as closely as possible, which is important since this spectrum embeds
the most important features of the dynamics of Xt.

2.3. Numerical procedure and computational cost

The minimization of (13) subject to (12) defines a standard quadratic problem which can be solved via well-
established numerical methods (see e.g. [8,9]). For this study we use the internal quadratic programming algo-
rithm of Matlab; various other software packages are also available to solve this type of problems. As input
for the Matlab algorithm the matrix H and the vectors F are needed, as well as an initial guess for L.

As mentioned earlier, for a Markov chain with n states, the minimization problem is of dimension n2 � n

and has n2 � n inequality constraints, see (12). The computational cost of a quadratic programming algorithm
may become prohibitive when the number of states in the chain is large. One particularly interesting way to
reduce the size of the minimization problem, and thereby the computational cost, is to restrict the class of
allowed Markov chain generators. For example, when considering a certain system there may be physical
grounds for allowing only non-zero transition rates from one state to a selected few other states. This will
be the case e.g. if the state-space S inherits some topology from the physical space where the actual dynamics
takes place (as will be the case in the examples treated in Sections 4 and 5). If for instance, each state is
connected to m < n other states only, yielding a mn-dimensional minimization problem. We will discuss this
possibility in more detail in Section 6.
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2.4. Error estimates

The computational strategy that we propose has two sources of errors as far as the fitting of the observed
timeseries by the continuous-time Markov chain is concerned. The first stems from the fact that the timeseries
may not be Markov. In this case, the Markov assumption itself is a source of error. This error may dominate
in many applications, but it is hard to quantify systematically. Therefore, we shall not dwell on this issue in
this section and postpone its discussion till Sections 4 and 5 where we investigate it via numerical experiments
and show how our computational strategy allows to overcome errors due to non-Markovianity of the
timeseries.

The second source of error is that, even if the observed timeseries is Markov and the exact matrix P(h) given
by (2) is embeddable, in general ~P ðhÞ 6¼ P ðhÞ due to finite sampling. As a result the observed spectrum will be
different from the actual spectrum of the chain. This is the error that we quantify in this section.

2.4.1. Central limit theorem and error estimate on ~L ¼ h�1 log ~P ðhÞ

Let P(h) = exp(hL) be the true transition probability matrix underlying the timeseries from which we have
constructed ~P ðhÞ according to (4). Assume that the chain has been sampled at N = ºT/hß successive points
with uniform time interval h, consistent with the process being observed on a fixed window of time
T > 0 independent of the lag h. The error on ~P ðhÞ obeys a version of the central limit theorem, see [10]:
as T!1,
ffiffiffiffi

T
p
ð~P ðhÞ � P ðhÞÞ !

ffiffiffi
h
p

QðhÞ; ð20Þ

in probability, where Q(h) is a Gaussian matrix with mean zero and covariance
EQðhÞðx; yÞQðhÞðx0; y0Þ ¼ P ðhÞðx; yÞ
lðxÞ ðdðy; y

0Þ � P ðhÞðx; y0ÞÞdðx; x0Þ. ð21Þ
For ~L ¼ h�1 log ~P ðhÞ we have
~L� L ¼ h�1 log½1þ ðP ðhÞÞ�1ð~P ðhÞ � P ðhÞÞ� � h�1ðP ðhÞÞ�1ð~P ðhÞ � P ðhÞÞ ð22Þ

since ~P ðhÞ � P ðhÞ as T becomes large. This implies that as T!1,
ffiffiffiffi

T
p
ð~L� LÞ ! 1ffiffiffi

h
p ðP ðhÞÞ�1QðhÞ; ð23Þ
where we have used (20), and Q(h) is the same matrix as above.

2.4.2. Error estimates on the eigenspectrum
Using standard matrix perturbation theory one can use (20) to derive the following convergence estimates

on the eigenspectrum f~wk; ~/k; ~kkg of ~L ¼ h�1 log ~P ðhÞ: as T!1,
ffiffiffiffi
T
p
ð~kk � kkÞ ! 1ffiffi

h
p e�kk hwkQðhÞ/k;ffiffiffiffi

T
p
ð~wk � wkÞ !

ffiffiffi
h
p

wkRðhÞk QðhÞ;ffiffiffiffi
T
p
ð~/k � /kÞ !

ffiffiffi
h
p

RðhÞk QðhÞ/k

8>><
>>: ð24Þ
in probability. Here {wk,/k,kk} is the set of eigenvectors and eigenvalues of L, Q(h) is the Gaussian matrix
defined before, and
RðhÞk ðx; yÞ ¼
X
q6¼k

ðekk h � ekqhÞ�1/qðxÞwqðyÞ.
For k = 1 a stronger estimate can be derived, since by construction ~k1 ¼ 0 and ~/1 ¼ ð1; . . . ; 1ÞT (i.e., the errors
on ~k1 and ~/1 are always zero). For ~w1 we have, as T!1,
ffiffiffiffi

T
p
ð~w1 � lÞ !

ffiffiffi
h
p

bðhÞ ð25Þ

in probability, where b(h) is a Gaussian vector with mean zero and covariance
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EbðhÞðxÞbðhÞðyÞ ¼ lðxÞðdðx; yÞ � lðyÞÞ þ
X
q6¼1

ekqh

1� ekqh
ðwqðxÞ/qðyÞlðyÞ þ wqðyÞ/qðxÞlðxÞÞ. ð26Þ
3. Toy examples

3.1. A toy example with exact generator

As a first test, we generate a timeseries for a simple 4-state Markov chain that has an exact underlying
generator, and use the timeseries to reconstruct the generator. This allows us to assess the convergence of
the algorithm with the length of the timeseries. We choose the true generator to be
Lexact ¼

�0:6 0:4 0:2 0

0:5 �1:2 0:4 0:3

0:3 0 �0:6 0:3

0 0:1 0:2 �0:3

0
BBB@

1
CCCA. ð27Þ
A sample path is generated from this generator and sampled at timelag h = 1. The eigenvalues of Lexact are 0,
�0.40, �0.89, �1.42, so h = 1 is of the order of the characteristic timescale of the system. We use timeseries
with 10n data points, with n = 3, . . ., 7. Thus, the stochastic matrix ~P is calculated from 10n data points, and the
eigenspectrum of ~P is used in the object function (10). For all calculations, the object function coefficients are
set to ~ak ¼ ~bk ¼ ~ck ¼ 1 for all k = 1,2,3,4.

The generators obtained by minimizing (10) subject to (12) are denoted by L10n

min; the generators constructed
from the same 10n data points according to (9) are denoted by ~L10n

. From the ~L10n
we also construct ~L10n

g using
(19). Thus the L10n

min and ~L10n

g always are true generator, whereas the ~L10n
may not (they usually have one or more

negative off-diagonal elements).
In Figs. 1 and 2, we show two different error measures for the various matrices. Fig. 1 is a graph of the

value of E, the proposed object function, using the eigenspectrum of Lexact as reference spectrum. This error
measure indicates how well the eigenspectrum of the exact underlying generator (Lexact) is recovered by the
various approximations of the generator. In Fig. 2 a different error measure was used: it shows the distance
E 0 from Lexact using the norm (18). Both figures show the convergence to Lexact of the approximations with
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increasing length of timeseries. Increasing the length by a factor 10 reduces both error measures with about
a factor 10.

As an example, for n = 4 the actual matrices are as follows:
L104

min ¼

�0:612 0:416 0:196 0:000

0:533 �1:278 0:441 0:304

0:309 0:002 �0:623 0:312

0:009 0:079 0:195 �0:283

0
BBB@

1
CCCA; ð28aÞ

~L104 ¼

�0:612 0:417 0:198 �0:002

0:534 �1:279 0:441 0:304

0:310 0:001 �0:624 0:313

0:009 0:079 0:195 �0:284

0
BBB@

1
CCCA; ð28bÞ

~L104

g ¼

�0:615 0:417 0:198 0:000

0:534 �1:279 0:441 0:304

0:310 0:001 �0:624 0:313

0:009 0:079 0:195 �0:284

0
BBB@

1
CCCA. ð28cÞ
Notice that in this first toy example, the procedure that we propose to construct Lmin by constrained minimi-
zation of (13) does not produce results that are significantly better than using the generator in (19). This, how-
ever, is mainly due to the fact that the timeseries is Markov and has an underlying generator. The full power of
our procedure will become more apparent in situations where the timeseries has no underlying generator, such
as the ones we consider in the next section as well as in Sections 4 and 5.

3.2. A toy example without exact generator

In this section, we illustrate the algorithm by using it on another simple example, but this time without
underlying generator (i.e. for a P(h) that is not embeddable). Specifically, we take
P ðhÞðx; yÞ ¼
cx
jx�yj if x 6¼ y;

cx otherwise,

(
ð29Þ
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where the cx are normalization constants such that
P

yP ðhÞðx; yÞ ¼ 1 8x (thereby ensuring that P(h) is a stochas-
tic matrix). We choose the state-space to have 10 states: x,y 2 {1,2, . . ., 10}. The value of the lag h is irrelevant
here; we set it to 1 (taking another value would only correspond to a time rescaling of the Markov chain). The
eigenvalues ~Kk of P(h) are all real; four are on the negative real axis. Therefore, P(h) has no exact underlying
generator. For the reference eigenvalues ~kk we take log j~Kkj if ~Kk is negative and real; log ~Kk otherwise.

Two different sets of weights were used for this calculation. As the first set we take ~ak ¼ ~bk ¼ ~ck ¼ 1 for all
k. Thus, there is no extra emphasis on the invariant distribution (k = 1) or the next leading eigenmodes. The
results of the minimization are presented in the form of comparisons between the eigenmodes {wk,/k,kk} of
the generator Lmin that came out of the minimization, and the reference set f~wk; ~/k; ~kkg. The leading four wk

and ~wk as well as the eigenvalues kk and ~kk are shown in Figs. 3 and 4. To quantify the difference between the
two sets eigenmodes, the relative errors jwk � ~wkj=j~wkj, j/k � ~/kj=j~/kj and jkk � ~kkj=j~kkj are shown in Fig. 5 (the
errors of /1 and k1 are zero by construction and are therefore not shown).

The second set of weights is equal to the previous set, except that a1,a2,a3, b2,b3, c2 and c3 all have been
multiplied by 100. Thus, errors in the leading three eigenmodes (including the invariant distribution) are
penalized more heavily than previously. As a result, the relative errors for those modes (both eigenvectors
and eigenvalues) are much smaller than in the previous calculation, see Fig. 6. In a figure, they are indistin-
guishable by eye from the leading three reference eigenmodes (figure not shown).

The results show that the algorithm works very well for finding a generator matrix whose eigenmodes
resemble the reference eigenmodes closely, even though the stochastic matrix (29) has no exact underlying gen-
erator. By increasing the weight on the leading eigenmodes the match between the reproduced and reference
leading eigenmodes becomes very good.

Constructing a generator using (19) gives bad results in this case. The invariant distribution, w1, is well cap-
tured but the eigenvectors and eigenvalues with k > 1 have big errors. For example, the leading reference
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eigenvalues are ~k2 ¼ �0:60; ~k3 ¼ �1:08; the generator obtained from (19) gives k2 = �1.53, k3 = �2.37. By
contrast, the generator obtained with our proposed object function has relative errors for k2 and k3 of about
10�2 using the first set of weights (Fig. 5) and about 10�4 using the second set of weights (Fig. 6).

4. Application to a timeseries from molecular dynamics

In this section, we test our numerical procedure on data from a numerical simulation of the alanine dipep-
tide molecule. The ball and stick model of alanine dipeptide is shown in Fig. 7: the molecule has backbone
degree of freedoms (dihedral angles U and W), three methyl groups (CH3), as well as polar groups (N–H,
C@O). The data we used was generated by a molecular dynamic simulation of alanine dipeptide in vacuum
using of the full atomic representation of the molecule with the CHARMM29 force field [11]. Out of this data,
we extract the timeseries of one backbone dihedral (or torsion) angle, traditionally denoted as U (see Fig. 7),
which is 5 · 106 points long (time interval between consecutive points equals 0.1 ps). Other strategies to arrive
at reduced descriptions of molecular dynamics can be found for example in [12,13].

A histogram of the distribution of the angle U, Fig. 8, shows three peaks (two well-pronounced ones around
U = �150� and U = �90�, and one much more shallow around U = 75�) corresponding to three long-lived
Fig. 7. Schematic representation of the alanine dipeptide (CH3–CONH–CHCH3–CONH–CH3). The backbone dihedral angles are labeled
by / (U in text): C–N–C–C and w (U in text): N–C–C–N. The picture is taken from [14].
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Fig. 8. Histogram for the torsion angle U of the simulated alanine dipeptide molecule. The domain is periodic. Three metastable sets are
visible, one with approximate range U 2 (50�,100�), another one with U 2 (�180�,�110�) [ (150�, 180�) and a third one with
U 2 (�110�,�50�).
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conformation states that characterize alanine dipeptide (see e.g. [15,14,16]). Since the three sets can be distin-
guished in the histogram of U, we want to find a generator that correctly describes the statistics and dynamics
of U alone. This is a particularly difficult test, since typically both torsion angles U and W are used in attempts
to find a reduced description of the macrostate dynamics of the molecule (as, for instance, in [13]). We bin the
data (i.e. U) into 10 bins of 36� each, thereby obtaining a state space S with 10 states. The timeseries is binned
accordingly.

The eigenvalue spectrum ~kk is calculated for various lags h, by constructing ~P ðhÞ from (8), calculating its
spectrum ~Kk and using (9). In Fig. 9, we show ~kk for h = 0.1hn ps, 1 6 hn 6 100. The value of ~k2 and ~k3 can
be seen to vary with h due to the non-Markov nature of the data. From Fig. 9 as well as from the shape
of the autocorrelation function (shown in Fig. 14) we infer that in order to get the long timescale behavior
right, one should set ~k2 ¼ �0:007 and ~k3 ¼ �0:4. The other eigenvalues, as well as all eigenvectors, are taken
from P(h) at h = 0.1 ps.
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Fig. 9. Real parts of the eigenvalues ~kk calculated from the molecular simulation data using different lags. In the inset we have zoomed in
on the values of ~k2 (by construction, ~k1 ¼ 0 for all h).
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To find the optimal generator, the weights of the object function are set to ~ak ¼ ~bk ¼ ~ck ¼ 1 for all k. The
eigenvalues kk and (leading) eigenvectors wk and /k of the resulting generator are shown in Figs. 10–12. The
leading eigenmodes are well reproduced by the generator, including the invariant distribution (w1). From the
structure of the second and third eigenvectors it is visible that the two slow timescales of the system are related
to transitions between the three metastable sets. A graphical representation of the generator itself is given by
showing [l(x)Lmin(x,y)] (no summation over x; x 6¼ y) in Fig. 13. Showing Lmin itself would not be informative
as the figure would be dominated by jump rates out of states with very low probability. From Fig. 13 one can
see that (a) transitions are mainly local (the highest transition rates are for jumps from x to x ± 1) and (b) the
Markov chain is nearly time-reversible (it is close to detailed balance, as can be seen from the near-symmetry
of l(x)Lmin(x,y)).

The autocorrelation function (ACF) of the data and of the Markov chain generator are shown in Figs.
14 and 15. The rate of decorrelation at longer timescale (>20 ps) of the Markov chain is a bit higher than
that of the data. This is related to a minor error in the reconstructed second eigenvalue, k2 < ~k2. Notwith-
standing, the overall shape of the ACF is well reproduced by the Markov chain, which is quite remarkable
since the ACF involves two very different timescales – very rapid decay at the beginning, much slower after-
wards. Overall, the reconstructed Markov chain is capable of correctly describe the dynamics of the torsion
angle U in alanine dipeptide despite the severe coarsening that a representation of the molecule by this angle
alone represents.

Note that, in order to reproduce auto- and cross-correlations functions of a given timeseries correctly with a
reconstructed optimal generator, it is not enough to reproduce the eigenvalues correctly – the eigenvectors are
important as well. It is easy to show that the ACF, for example, can be written as
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Fig. 14. Autocorrelation function for U, from optimal Markov chain generator and directly from data. The unit of time is picoseconds.
The overall shape of the ACF is well reproduced by the Markov chain, which is quite remarkable since the ACF involves two very different
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EðX tþsX tÞ ¼
Xn

k¼1

etkk
X
x2S

lðxÞx/kðxÞ
X
y2S

ywkðyÞ ¼
Xn

k¼1

etkk ck ð30Þ
(assuming here, for simplicity, zero mean and unit variance for Xt). The ACF is thus determined by both the
eigenvalues kk and the constants ck, which are in turn determined by the eigenvectors.

5. Application to a timeseries from an atmospheric model

In this section, we use a timeseries of a model for large-scale atmospheric flow in the Northern Hemi-
sphere. The model describes barotropic flow over realistic topography, and generates a realistic climate
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using 231 variables (wavenumber truncation T21). A more detailed description of the model, its physical
interpretation and its dynamics is given in [17]. As is usually the case in models for large-scale flow, much
of the interesting dynamics is captured by a fairly low number of leading modes of variability (Principal
Components, or PCs). Describing the dynamics of the leading PCs without explicitly invoking the other,
trailing PCs is a challenging and well-known problem; one that we aim to tackle here using a continuous-
time Markov chain description (see also [18–20] for different approaches to arrive at a reduced description
of the dynamics of the leading modes of variability of the same atmospheric model). Since we resolve only
one or two variables out of a total of 231, without a clear timescale separation between resolved and unre-
solved variables, non-Markov effects are important in this situation. It is far from obvious that a Markov
chain can be successful at all under these circumstances.

Although the use of continuous-time Markov chains is rare in atmosphere-ocean science, the use of dis-
crete-time Markov chains is not. Examples can be found in [21–25] and many more studies.
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h = 100, except for k = 2,3 where we set ~k2 ¼ �0:007, ~k3 ¼ �0:03 (see text).
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5.1. One-dimensional situation

For the one-dimensional case the leading principal component (PC1) is used; in Section 5.2 we consider the
two-dimensional case, using PC1 and PC3. A total of 107 datapoints is available, with a timestep h = 1 which
is interpreted as 1 day.

The state space for PC1 is discretized into 10 bins, which we interpret as the 10 states of the state-space S.
The timeseries is binned accordingly, and we calculate ~P ðhÞ from (8) and its eigenspectrum for all lags
1 6 h 6 200. The real parts of the (leading) eigenvalues ~kk are shown in Fig. 16. Eigenvalues with
Re~kk < �0:1 are not shown, since we are primarily interested in the leading eigenvalues. As can be seen, ~k2

and ~k3 (both are real) drop in value over the range 1 6 h 6 10, then go up again. Only for long lags
(h � 200 for ~k2, h � 100 for ~k3) do they reach values that are consistent with the ACF for PC1 (shown in
Fig. 20): ~k2 ¼ �0:007, ~k3 ¼ �0:03. For even longer lags, the estimates for ~k2 and ~k3 eventually become over-
whelmed by sampling error. For ~k3 this can be seen to happen for h > 100 (Fig. 16), for ~k2 it lies beyond the
limits of the figure.

With Fig. 16 in mind, we set ~k2 ¼ �0:007, ~k3 ¼ �0:03 by hand, and use the spectrum of ~P ðhÞ at h = 100 for
the other eigenvalues and for all eigenvectors. Other than for the molecular data in the previous section, the
lag h = 1 is too low in this case, because h = 1 is below the slowest of the fast timescales of the system. If data
from h = 1 is used, these fast timescales negatively affect the effective description of the slow dynamics. At
h = 100 this is no longer a problem.

The object function weights are set to ~a1 ¼ ~c2 ¼ ~c3 ¼ 100 and ~ak ¼ ~bk ¼ ~ck ¼ 1 otherwise. The generator
obtained from the minimization has leading eigenmodes that match the reference spectrum quite well, see
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Fig. 18. Leading eigenvectors wk and ~wk (reconstructed, solid and reference, dashed) of the one-dimensional atmospheric data example.
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Fig. 20. Autocorrelation function for PC1, from optimal Markov chain generator and directly from data. Timelags are in days. The
generator was obtained with most eigenmodes estimated at h = 100, see text.
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Fig. 21. Same as Fig. 20 in linear-log scale.
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Fig. 23. Eigenvalues kk and ~kk (reconstructed and reference) of two-dimensional atmospheric data example.
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Fig. 17 for the eigenvalues and Figs. 18 and 19 for the leading four wk and /k. The ACF is also well repro-
duced, see Figs. 20 and 21. In Fig. 22, the generator is represented by showing [l(x)Lmin(x,y)] (no summation
over x; x 6¼ y). This generator, unlike the one obtained for the molecular data, is far from time-reversibility
(l(x)Lmin(x,y) is not nearly symmetric), and nonlocal transitions (from x to y > x + 1 or y < x � 1) are
important.
Fig. 24. Leading eigenvectors wk and ~wk (reconstructed and reference) of two-dimensional atmospheric data example.



Fig. 25. Leading eigenvectors /k and ~/k (reconstructed and reference) of two-dimensional atmospheric data example.
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5.2. Two-dimensional situation

For the two-dimensional case (timeseries for PCs 1 and 3) we calculate ~P ðhÞ from (4) with h = 50, using
5 · 5 bins. As in the one-dimensional case, too small values of h yield leading eigenmodes of ~P ðhÞ with
which the ACFs cannot be reproduced correctly, even if the generator eigenspectrum matches the refer-
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Fig. 26. Autocorrelation functions for PCs 1 (x) and 3 (y), from optimal Markov chain generator and directly from data.
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Fig. 27. Same as in Fig. 26 in linear-log scale. Notice that the procedure allows to reproduce the ACF rather well, including the fact that
the decay occur on two different time-scales: fast at the beginning, then more slowly afterwards.
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ence spectrum perfectly. Because of the higher number of bins than used in the one-dimensional case,
sampling errors for ~P ðhÞ are too large at h = 100. Therefore we use a smaller lag, h = 50. The leading
eigenvalue ~k2 is again adjusted to �0.007 (just as in the one-dimensional case); ~k3 ¼ �0:033 at h = 50
and is not further adjusted. Two of the bins remain empty, so effectively the state space is discretized into
23 bins. The object function weights are the same as in the one-dimensional case (~ak ¼ ~bk ¼ ~ck ¼ 1 "k,
except ~a1 ¼ ~c2 ¼ ~c3 ¼ 100).

Fig. 23 shows the eigenvalues kk of the resulting generator Lmin, as well as the reference values ~kk. Figs. 24
and 25 show the leading eigenvectors. The leading eigenvectors and eigenvalues are well reproduced, in par-
ticular the invariant distribution w1. The ACFs are shown in Figs. 26 and 27; the generator captures the decay
of both ACFs rather well.

6. Conclusion and generalization

We have presented a new method to fit data from timeseries by a continuous-time Markov chain via the
solution of a quadratic programming problem. The key element in the approach is the matching of the eigen-
spectrum of the generator with the eigenspectrum observed from the data. Since the eigenspectrum completely
determines the generator and its associated Markov process, matching it with the observed spectrum, if suc-
cessful, amounts to the most complete reconstruction of the continuous-time Markov chain from the data.
Matching of the observed invariant distribution is part of this reconstruction.

The Markov chain embedding problem implies that one cannot expect given timeseries to have always an
exact underlying generator (in practice, the stochastic matrices calculated from data hardly ever have an exact
underlying generator). Therefore, optimal generators have to be found by minimizing an object function that
measures the difference between the desired and the actual spectral properties of the generator. We have pro-
posed an object function that is quadratic and convex, and does not require calculation of the eigenspectrum
of the generator. Minimization is therefore computationally cheap and easy (quadratic programming). The
reconstruction method was illustrated with several examples. We used timeseries generated by Markov chains
with and without underlying generator, as well as timeseries from two applications (molecular dynamics and
atmospheric flow) with problems of non-Markov effects at short timelags. The algorithm gave good results; in
all examples the leading eigenvectors and eigenvalues of the reconstructed generator resembled the observed
eigenmodes (very) closely.

In its most general setting, imposing no additional conditions on L other than that it be a true generator,
the minimization problem is of dimension n2 � n if the state-space of the Markov chain consists of n states.
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However, by restricting the class of Markov chain generators, the dimensionality of the problem can be
reduced without reducing the size of the state-space. For example, the assumption of detailed balance,
l(x)L(x,y) = l(y)L(y,x), eliminates half of the variables from the minimization problem: only the matrix ele-
ments L(x,y) with x > y need to be determined. Detailed balance is a non-trivial assumption; for instance, the
optimal generator found for the molecular data is close to detailed balance, whereas the generators for the
atmospheric data are not. Another example of restricting the class of generators would be to impose the struc-
ture of a birth-death process. Such a process is characterised by a generator of the type:
X

y2S
Lðx; yÞf ðyÞ ¼

Xm

j¼1

mjðxÞðf ðxþ ejÞ � f ðxÞÞ; ð31Þ
where mj(x) P 0 are constants, and ej are such that xþ ej 2S if mj(x) 6¼ 0 and, typically, m is (much) smaller
than n. One would then fix the ej and minimize the object function (13) over all possible mj(x) subject to
mj(x) P 0. The dimensionality of this minimization problem is mn, which is substantially smaller than
n2 � n if m� n. In terms of implementation, it is a completely straightforward generalization of what was
done in this paper.

Notice in particular that a structure like (31) for the generator is quite natural for systems in which jumps
can only occur between states x and y which correspond to neighboring bins in physical space. These consid-
erations lead us to the possibility of generalizing the reconstruction procedure, outlined in this paper for finite
state Markov chains, to diffusion processes. An appropriate discretization of the Fokker–Planck operator
using e.g. finite-differences or finite-elements will convert the problem of reconstructing the drift and diffusion
coefficients into the problem of reconstructing a generator with a structure similar to the one in (31). The pro-
cedure proposed here can be used to tackle the latter problem, and thereby reconstruct the drift and diffusion
in spatially discretized form. We intend to explore this approach to the reconstruction of diffusion processes in
a future study.
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